
loop_wrapper Documentation
Release 3.5.0

Thomas Lavergne

Apr 17, 2020

Contents:

1 The Basics 1

2 Running on several CPUs 3

3 The {d:} construct 5

4 Date looping controls 7
4.1 Datetime stepping . 7
4.2 Backwards looping . 8
4.3 <START-DATE> and <STOP-DATE> . 8

5 Wildcard expansion 9
5.1 Using wildcards to find files . 9
5.2 Re-using file names with {f:} . 10

6 Verbosity and reporting 11

7 Indices and tables 13

i

ii

CHAPTER 1

The Basics

loop_wrapper is a job-control tool to make it easier to loop through datetime ranges. loop_wrapper can be
instructed to loop through a range of dates and spawn a command you specify for each date in the range. The command
can be an excutable or a shell command.

Here is a first basic example:

[$] loop_wrapper --quiet 19900101 19900105 echo "here is a date {d:%Y/%m/%d}"
here is a date 1990/01/01
here is a date 1990/01/02
here is a date 1990/01/03
here is a date 1990/01/04
here is a date 1990/01/05

The loop_wrapper command-line has always such structure.

[$] loop_wrapper [optional flags] <START-DATE> <STOP-DATE> <COMMAND>

In the first basic example above, --quiet is a flag that reduces verbosity. <START-DATE> is 01/01/1990,
STOP-DATE is 5 days later 05/01/1990, and the <COMMAND> is a Bash echo invocation. The most important
part of this command is the {d:%Y/%m/%d} construct. This {d:} directive tells loop_wrapper how to print the
datetime at each date in the range. There must be at least one such {d:} construct in <COMMAND>.

For the second example, consider you have an executable process (script or compiled it does not matter). Among
other parameters, process can take -d DDMMYYYY and will then do some processing for that day. Let’s further
assume that process also takes a -i (input)

[$] loop_wrapper 20150227 20150302 process -i /path/to/inputdir -d {d:%Y%m%d}
CMD is process -i /path/to/inputdir -d {d:%Y%m%d}
Serial run process -i /path/to/inputdir -d {d:%Y%m%d} from 2015-02-27 00:00:00 to
→˓2015-03-02 00:00:00
do (process -i /path/to/inputdir -d 20150227)
do (process -i /path/to/inputdir -d 20150228)
do (process -i /path/to/inputdir -d 20150301)
do (process -i /path/to/inputdir -d 20150302)
Done

1

loop_wrapper Documentation, Release 3.5.0

Since we did not specify --quiet, we get to see more information from loop_wrapper, including what COMMAND
(CMD) is (1st line), that a serial run is prepared from 27/02/2015 to 02/03/2015 (2nd line), the commands that the shell
is instructed to run in turn (the do (. . .) lines). And finally that we are Done.

2 Chapter 1. The Basics

CHAPTER 2

Running on several CPUs

It is easy to switch from a serial run to a parallel one, just use the --cpu all option. loop_wrapper will then
divide the range of dates to be processed into smaller chunks, and distribute the chunks to the available CPUs. A
Python multiprocessing Pool is used to balance the load.

You can also control the number of CPUs to be used with --cpu N. If N is a positive number, it indicates the number
of CPUs to use. If N is a negative number, it indicates the number of CPUs to save. --cpu -2 will use all available
but 2 CPUs.

Warning: The use of parallel runs with the --cpu option does not guarantee the order in which the dates are
processed.

3

https://docs.python.org/2/library/multiprocessing.html

loop_wrapper Documentation, Release 3.5.0

4 Chapter 2. Running on several CPUs

CHAPTER 3

The {d:} construct

A {d:format} construct is needed for the <COMMAND> to work in loop_wrapper. All the Python datetime
strftime constructs are allowed. For example {d:%Y%m%d} (20150216), {d:%Y%j} (2015047), {d:%Y/%m/}
(2015/02/). This gives full freedom to format the date as required by the processing command.

Note: {d:} (no explicit format given) is equivalent to {d:%Y%m%d}.

5

https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior

loop_wrapper Documentation, Release 3.5.0

6 Chapter 3. The {d:} construct

CHAPTER 4

Date looping controls

4.1 Datetime stepping

loop_wrapper supports stepping different lengths and different units. Datetime stepping is controlled by the
--every flag, that defaults to --every 1d for steps of 1 day. The general format is --every Nu where N
is a positive integer, and u a unit. The supported units are:

Table 1: Units for --every
u Time Unit
d day
m month
Y year
H hour
M minute
S second
w weekly

We provide two examples with --every

[$] loop_wrapper --every 1m 20150201 20150501 process -i /path/to/inputdir/{d:%Y/%m/}
CMD is process -i /path/to/inputdir/{d:%Y/%m/}
Serial run process -i /path/to/inputdir/{d:%Y/%m/} from 2015-02-01 00:00:00 to 2015-
→˓05-01 00:00:00
do (process -i /path/to/inputdir/2015/02/)
do (process -i /path/to/inputdir/2015/03/)
do (process -i /path/to/inputdir/2015/04/)
do (process -i /path/to/inputdir/2015/05/)
Done

[$] loop_wrapper --every 6H 2015041006 2015041118 process -H {d:%H}
CMD is process -H {d:%H}
Serial run process -H {d:%H} from 2015-04-10 06:00:00 to 2015-04-11 18:00:00

(continues on next page)

7

loop_wrapper Documentation, Release 3.5.0

(continued from previous page)

do (process -H 06)
do (process -H 12)
do (process -H 18)
do (process -H 00)
do (process -H 06)
do (process -H 12)
do (process -H 18)
Done

4.2 Backwards looping

The default for loop_wrapper is to loop from <START-DATE> to STOP-DATE forward in time. You can also
instruct backward looping with the --backwards flag.

Note: --backwards cannot be used with parallel runs (--cpu) since the execution order is then not guaranteed.

Note: Even with --backwards, the oldest date should be in <START-DATE> and the newer date in STOP-DATE.

4.3 <START-DATE> and <STOP-DATE>

The <START-DATE> and <STOP-DATE> arguments can be specified with several formats as described in the table
below.

Table 2: <START-DATE> and <STOP-DATE> format
Format Default
YYYYMMDD At 00:00:00
YYYYMMDDHH At HH:00:00
YYYYMMDDHHMM At HH:MM:00
YYYYMMDDHHMMSS At HH:MM:SS
YYYYMM On 01/MM/YYYY
YYYY On 01/01/YYYY
TODAY At 00:00:00
YESTERDAY At 00:00:00

8 Chapter 4. Date looping controls

CHAPTER 5

Wildcard expansion

It is sometimes not enough to pass a datestring as a parameter to a process script. loop_wrapper also gives the
possibility to use a wildcard expansion to find files or directories with provided patterns.

5.1 Using wildcards to find files

For example, consider a directory tree with content

./
2005

tst_A_20051228.tar
tst_A_20051229.tar
tst_A_20051230.tar
tst_A_20051230.zip
tst_A_20051231.tar
tst_B_20051228.tar
tst_B_20051229.tar
tst_B_20051230.tar
tst_B_20051231.tar
tst_C_20051228.tar
tst_C_20051229.tar
tst_C_20051230.tar
tst_C_20051231.tar

2006
tst_A_20060101.tar
tst_A_20060102.tar
tst_AA_20060101.tar
tst_AA_20060102.tar
tst_B_20060101.tar
tst_B_20060102.tar
tst_C_20060101.tar
tst_C_20060102.tar

The command below will un-tar all the tst_?_.tar files with date ranging from 30/12/2005 to 02/01/2006:

9

loop_wrapper Documentation, Release 3.5.0

[$] loop_wrapper 20051230 20060102 'tar -xf [./{d:%Y}/tst_?_{d:}.tar]'
CMD is tar -xf [./{d:%Y}/tst_?_{d:}.tar]
Serial run tar -xf [./{d:%Y}/tst_?_{d:%Y%m%d}.tar] from 2005-12-30 00:00:00 to 2006-
→˓01-02 00:00:00
do (tar -xf ./2005/tst_A_20051230.tar)
do (tar -xf ./2005/tst_B_20051230.tar)
do (tar -xf ./2005/tst_C_20051230.tar)
do (tar -xf ./2005/tst_A_20051231.tar)
do (tar -xf ./2005/tst_B_20051231.tar)
do (tar -xf ./2005/tst_C_20051231.tar)
do (tar -xf ./2006/tst_A_20060101.tar)
do (tar -xf ./2006/tst_B_20060101.tar)
do (tar -xf ./2006/tst_C_20060101.tar)
do (tar -xf ./2006/tst_A_20060102.tar)
do (tar -xf ./2006/tst_B_20060102.tar)
do (tar -xf ./2006/tst_C_20060102.tar)
Done

The command-line above introduces new constructs that are necessary for using wildcard expansion in
loop_wrapper. First, the <COMMAND> is enclosed in single-quotes '. This prevents the shell to perform its
own wildcard expansion before the loop_wrapper event starts.

Second, the part of <COMMAND> that contains wildcards (in this case ?) and requires expansion is enclosed in square
brackets []. Wildcard expansion will be attempted only for parts of the <COMMAND> enclosed in []. There can be
several of these in the same <COMMAND>.

When desiging loop_wrapper calls with wildcards, it is usefull to consider the order in which the operations are
processed. First a command is prepared with substitution of all the {d:format} constructs, then for each such
command, wildcard expansion is performed to find files matching the pattern. New commands are created and started
for each new file.

The syntax for wildcard expansion is that of the Python glob module, allowing many wildcards such as * (any charac-
ters, any number), ? (any character, once), [0-9] (any character in the range, once), etc. . .

5.2 Re-using file names with {f:}

Each time a wildcard expansion is successfull (finds an existing file), the full path of the file is stored and can be
re-used on the same command with constructs {f:} (full path) and {F:} (basename).

For example, consider you have a tool convert FILE1 FILE2 and many files to convert arrange in a hierarchy
of sub-directories below in/, the following command will process some of them and store the result in another set of
sub-directories below out/:

loop_wrapper 20150216 20150315 'convert [in/{d:%Y/%j}/ex_*_{d:%Y%m%d}.nc] out/{d:%Y/
→˓%m/}{F:}'

10 Chapter 5. Wildcard expansion

https://docs.python.org/2/library/glob.html#module-glob

CHAPTER 6

Verbosity and reporting

Several options allow to control the level of verbosity and reporting from loop_wrapper runs.

--quiet removes all output by loop_wrapper and only the output from the processing <COMMAND> are printed.

11

loop_wrapper Documentation, Release 3.5.0

12 Chapter 6. Verbosity and reporting

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

13

	The Basics
	Running on several CPUs
	The {d:} construct
	Date looping controls
	Datetime stepping
	Backwards looping
	<START-DATE> and <STOP-DATE>

	Wildcard expansion
	Using wildcards to find files
	Re-using file names with {f:}

	Verbosity and reporting
	Indices and tables

